

GaAs MMIC Low Noise Amplifier

Chip, 18-40GHz

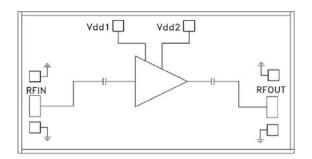
Features:

• Frequency: 18-40GHz

• Small Signal Gain: 15dB

• Noise Figure: 3.0dB max.

• P-1dB: 5dBm


• Supplying: +5V/45mA

• 50Ohm Input/Output

100% Testing

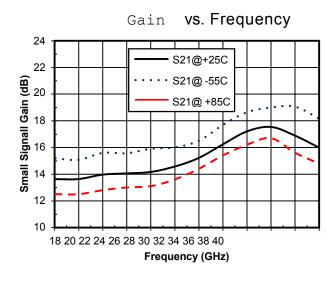
Chip Size: 2.25 x 1.6 x 0.09 mm

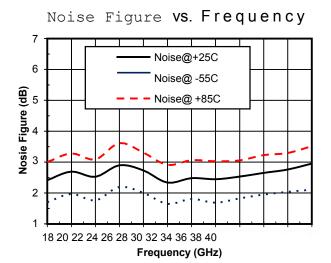
Functional Diagram:

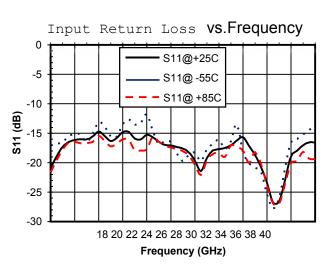
General Description:

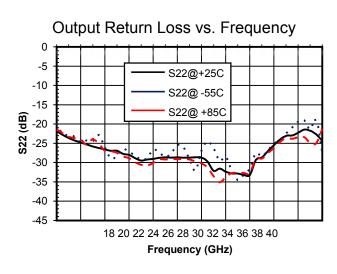
YTLA-1840E is a GaAs MMIC HEMT Self-biased, wideband Low Noise Amplifier Die Which perate between 18GHz~40GHz with small signal 15dB with noise figure 3.0dB. YTLA-1840E use + 5V single supply.

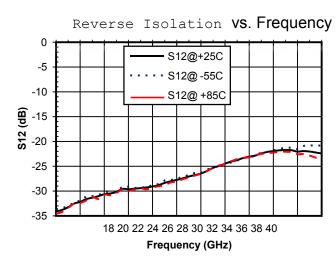
Parameter ¹			
Max Drain Voltage	+7V		
Max. input Power	+20dBm		
Working Temperature	-55 ~ +85°C		
Storage Temperature	-65 ~ +150°C		

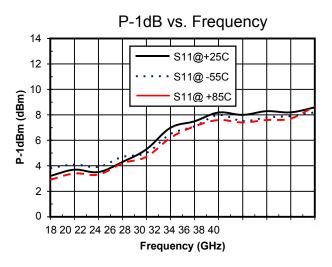

[1] There is a risk of permanent damage over any of the above maximum limits \circ

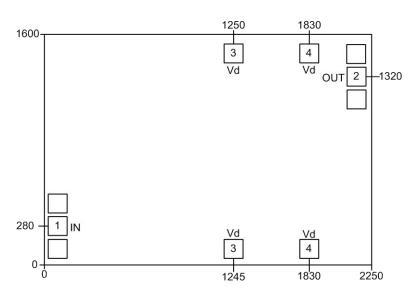

Electrical Specifications(T _A = +25°C, Vd=+5V)						
Parameter	Min.	Type	Max	Units		
Frequency	18-40			GHz		
Small Signal Gain	13.5	15	17.5	dB		
Flatness		±2.0		dB		
Noise Figure	-	-	3.0	dB		
P-1dB	-	5	-	dBm		
Input Return Loss	15	18	-	dB		
Output Return Loss	20	25	-	dB		
Supply Current		45		mA		




GaAs MMIC LNA Chip, 18-40GHz

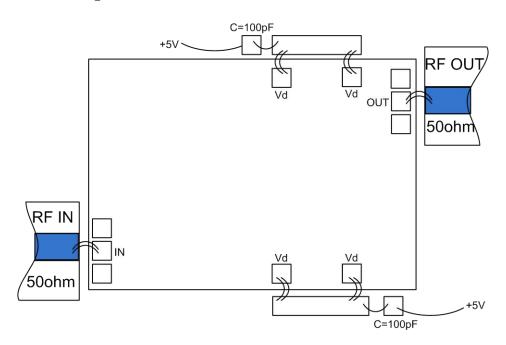

Curve





GaAs MMIC LNA Chip, 18-40GHz

Outline Drawing 2


[2] um

Pad Descriptions					
Part No.	Function	Descri	Interface		
		ption	Schematic		
1	RFIN	RF signal input, no straightening	RF IN		
		capacitor			
2	RFOUT	RF signal input, no straightening	RF OUT		
		capacitor			
3	VD	Amplifier drain bias, external 100pf bypass capacitance, single side power supply, only one side of the bonding vd .	Vdd		
Die Bottom	GND	Die bottom must be connected to RF/DC ground.			

GaAs MMIC LNA Chip, 18-40GHz

Assembly

[3] single side power supply, only one side of the bonding vd \circ

Handling Precautions

- All bare die are placed in either Waffle or Gel based ESD protective containers, stored in a dry nitrogen environment.
- Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.
- Follow ESD precautions to protect against ESD strikes.
- Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers. The surface of the chip has fragile air bridges and should not be touched with vacuum collet, tweezers, or fingers.
- The chip is back-metallized and can be die mounted with AuSn eutectic preforms or with electrically conductive epoxy. The mounting surface should be clean and flat.
- temperature of 265 °C. When hot 90/10 nitrogen/hydrogen gas is applied, tool tip temperature should be 290 °C. DO NOT expose the chip to a temperature greater than 320 °C for more than 20 seconds. No more than 3 seconds of scrubbing should be required for attachment
- Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip once it is placed into position. Cure epoxy per the manufacturer's schedule.
 Ball bonds should be made with a force of 40-50 grams and wedge bonds at 18-22 grams. All bonds should be made with a nominal stage temperature of 150 °C. A minimum amount of ultrasonic energy should be applied to achieve reliable bonds.