750W, 50V High Power RF LDMOS FETs

Description

The YC1470VP is a 750W P1dB (900W P3dB), high performance, internally matched LDMOS FET,

designed for avionics applications with frequencies 1.2 to 1.4GHz

It is featured for high power and high ruggedness.

It is recommended to use this device under pulse condition only.

Typical Pulse Performance (on Yingtron wide band test fixture with device soldered):
Vds = 50 V, Idq = 50 mA, TA = 25 °C

Freq(MHz)	Pin(dBm)	P3dB(dBm)	P3dB (W)	IDS(A)	Gain(dB)	Eff(%)
1200	47	60.3	1072	4.06	13.3	53.50
1300	48.1	60.2	1047	4.23	12.1	50.15
1400	46.4	59.86	968	3.95	13.46	49.71

res

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Internally Matched for Ease of Use
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Excellent thermal stability, low HCI drift
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Table 1. Maximum Ratings

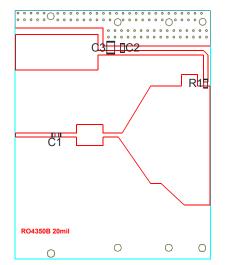
rabio in maximum ratingo						
Rating	Symbol		Value		Unit	
DrainSource Voltage	V _{DSS}		115		Vdc	
GateSource Voltage	V _{GS}		-10 to +10		Vdc	
Operating Voltage	V _{DD}		+55		Vdc	
Storage Temperature Range	Tstg	-	65 to +150		°C	
Case Operating Temperature	T _c		+150		°C	
Operating Junction Temperature	TJ	T, +225			°C	
Table 2. Thermal Characteristics				·		
Characteristic	Symbol	Symbol Value				
Thermal Resistance, Junction to Case, Case Temperature						
80°C, 870W Pout, Pulse width: 100us, duty cycle: 10%,	Rejc		0.02		°C/W	
Vds=50 V, IDQ = 100 mA						
Table 3. ESD Protection Characteristics				·		
Test Methodology		Class				
Human Body Model (per JESD22A114)		Class 2				
Table 4. Electrical Characteristics (TA = 25 °C unless o	therwise noted)					
			-			

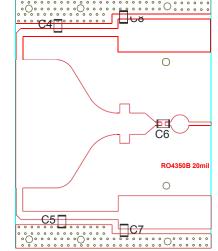
Characteristic Symbol Min Typ Max Unit

DC Characteristics

Document Number: YC1470VP Preliminary Datasheet V1.1

		-		Tomminary Da	
Drain-Source Breakdown Voltage (V _{GS} =0V; I _D =100uA)	V _{DSS}	115			V
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 50 \text{ V}, \text{V}_{GS} = 0 \text{ V})$	I _{DSS}			10	μA
GateSource Leakage Current $(V_{GS} = 6 V, V_{DS} = 0 V)$	I _{GSS}			1	μA
Gate Threshold Voltage $(V_{DS} = 50V, I_D = 600 \text{ uA})$	V _{GS} (th)		1.6		V
Gate Quiescent Voltage $(V_{DD} = 50 \text{ V}, I_{DQ} = 50 \text{ mA}, \text{Measured in Functional Test})$	V _{GS(Q)}		3		V


Functional Tests (In Yingtron test fixture, 50 ohm system) :

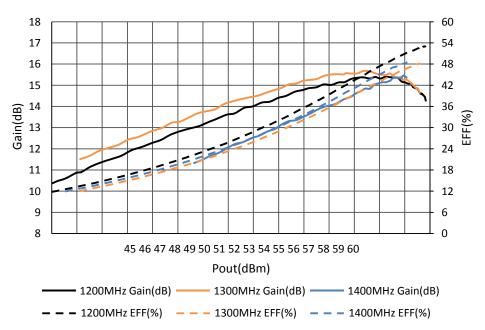

Pulse CW Signal Measurements. (Pulse Width=100s, Duty cycle=10%), Pin=46dBm

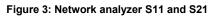
Power Gain @ Pout	Gp		13.3	dB
1dB compressed point	P1dB	750	800	W
Drain Efficiency@Pout	η_{D}		45.0	%
Input Return Loss	IRL		-7	dB

Reference Circuit of Test Fixture

(Layout file upon request) PCB: Roger 4350B, 20mils

Figure 1. Test Circuit Component Layout

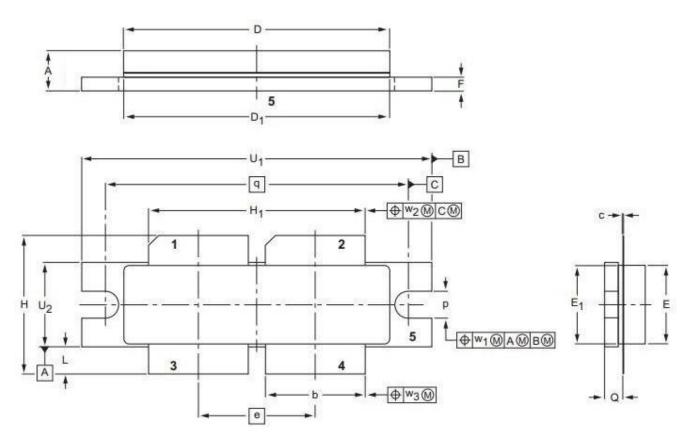

Part	description	Model			
C1,C2	56pF	ATC600F			
C4,C5,C6	47pF	ATC800B			
C3,C7,C8	10uF	10uF/50V			
R1	13Ω	1206			


Document Number: YC1470VP Preliminary Datasheet V1.1

TYPICAL CHARACTERISTICS

Pulse width:100uS, duty cycle: 10%, Vds = 50 V, Idq = 100 mA, TA = $25 \circ C$

Figure 2: Power gain and Efficiency as a Function of Pout



Package Outline

Flanged ceramic package; 2 mounting holes; 4 leads (1, 2-DRAIN, 3, 4-GATE, 5-SOURCE)

0 5 10 mm Luurul scale

UNIT	Α	b	с	D	D1	е	E	E1	F	н	H1	L	р	Q	q	U1	U ₂	W1	W ₂	W ₂
Mm	4.7	11.81	0.18	31.55	31.52	13.72	9.50	9.53	1.75	17.12	25.53	3.48	3.30	2.26	35.56	41.28	10.29	0.25	0.51	0.25
WIIII	4.2	11.56	0.10	30.94	30.96	13.72	9.30	9.27	1.50	16.10	25.27	2.97	3.05	2.01	55.50	41.02	10.03	0.25 0.51	0.51	0.25
Inches	0.185	0.465	0.007	1.242	1.241	0.540	0.374	0.375	0.069	0.674	1.005	0.137	0.130	0.089	1.400	1.625	0.405	0.01	0.02	0.01
inches	0.165	0.455	0.004	1.218	1.219	0.540	0.366	0.365	0.059	0.634	0.995	0.117	0.120	0.079	1.400	1.615	0.395	0.01	0.02 0.	0.01

OUTLINE		REFERENCE	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	1000E DATE
PKG-D4E					03/12/2013

Revision history

Table 6. Document revision history

Date	Revision	Datasheet Status
2018/8/4	Rev 1.0	Preliminary Datasheet Creation
2019/11/29	Rev 1.1	Update PCB layout

Disclaimers

Specifications are subject to change without notice. Yingtron believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Yingtron for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Yingtron. Yingtron makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Yingtron in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Yingtron products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Yingtron product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with us.

Copyright by Yingtron Microwave Electronics Co., Ltd.