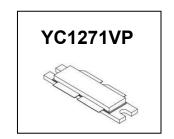
700W, 50V High Power RF LDMOS FETs

Description


The YC1271VP is a 700-watt, high performance, internally matched LDMOS FET, designed for multiple applications with frequencies 960 to 1215MHz.

It is featured for high power and high ruggedness, suitable for Industrial, Scientific and Medical application, as well as Avionics applications.

It is recommended to use this device under pulse condition only.

Typical Performance (on Yingtron's test fixture with device soldered): Vds = 50 V, Idq
= 100 mA, Pulse width:100uS, duty cycle: 10%,

Freq(MHz)	P3dB(dBm)	Gain(dB)	EFF(%)
960	60.4	13.8	46.1
1000	60.6	15.1	51.3
1030	60.4	15.2	53.5
1050	60.2	15.1	53.9
1090	59.7	14.6	52.4
1100	59.6	14.4	52.1
1150	59.3	13.7	48.3
1200	59.3	13.6	46.9
1215	59.2	13.7	46.0

Features

- · High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Internally Matched for Ease of Use
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Excellent thermal stability, low HCI drift
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	115	Vdc
GateSource Voltage	V _{GS}	-10 to +10	Vdc
Operating Voltage	V _{DD}	+55	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _c	+150	°C
Operating Junction Temperature	T,	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case, Case Temperature			
80°C, 1000W Pout, Pulse width: 100us, duty cycle: 10%,	RеJC	0.02	°C/W
Vds=50 V, IDQ = 100 mA			

Table 3. ESD Protection Characteristics

Document Number: YC1271VP Preliminary Datasheet V1.0

Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2

Table 4. Electrical Characteristics (TA = 25 °C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	
DC Characteristics						
Drain-Source Breakdown Voltage	.,		445		.,	
$(V_{GS}=0V; I_D=100uA)$	$V_{\scriptscriptstyle DSS}$		115		V	
Zero Gate Voltage Drain Leakage Current				10		
$(V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V})$	I _{DSS}			10	μА	
GateSource Leakage Current				1	μА	
$(V_{GS} = 6 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}			'	μΑ	
Gate Threshold Voltage	V _{GS} (th)		1.6		V	
$(V_{DS} = 50V, I_D = 600uA)$	V _{GS} (u1)		1.0		v	
Gate Quiescent Voltage	$V_{GS(Q)}$		2.85		V	
$(V_{DD} = 50 \text{ V}, I_{DQ} = 600 \text{ mA}, \text{Measured in Functional Test})$	V _{GS(Q)}		2.65		V	

Functional Tests (In Yingtron test fixture, 50 ohm system) : V_{DD} = 50 Vdc, I_{DQ} = 100 mA, f = 1030 MHz, Pulse CW Signal Measurements. (Pulse Width=100 μ s, Duty cycle=10%)

Power Gain @ P3dB	Gp	15.2	dB
3dB Compression Point	P3dB	60.4	dBm
Drain Efficiency@P3dB	η _D	53.5	%
Input Return Loss	IRL	-4	dB

Reference Circuit of Test Fixture Assembly Diagram

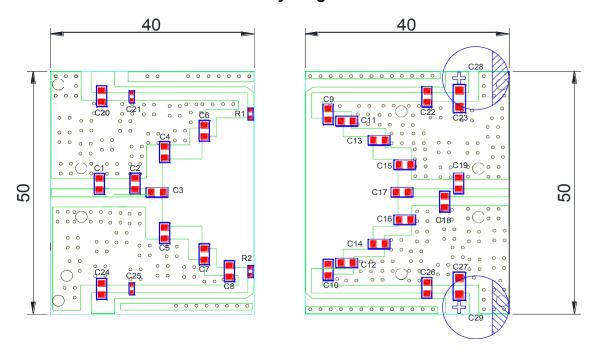


Figure 1. Test Circuit Component Layout

Table 1. Test Circuit Component Designations and Values

Component	Description	Suggested Manufacturer			
C1	2.0pF	ATC800B			
C2	3.0pF	ATC800B			
C3,C17,C22,C26	39 pF	ATC800B			
C4,C5	3.3 pF	ATC800B			
C6,C7	2.2 pF	ATC800B			
C8,C9,C10	5.6 pF	ATC800B			
C11,C12,C13,C14	3.9 pF	ATC800B			
C15,C16,C18,	2.7 pF	ATC800B			
C19	2.4 pF	ATC800B			
C21,C25	33 pF	ATC600F			
C20,C23,C24,C27	Electrolytic Capacitor ,10uF,50V				
R1,R2	Chip Resistor,10 Ω ,0805				
C28,C29	Electrolytic Capacitor ,470uF,63V				
PCB	0.762mm [0.030"] thick, εr=3.48, Rogers RO4350B, 1 oz. copper				

Document Number: YC1271VP Preliminary Datasheet V1.0

TYPICAL CHARACTERISTICS

Condition: Vds = 50 V, Idq = 100 mA, Pulse width:100uS, duty cycle: 10%.

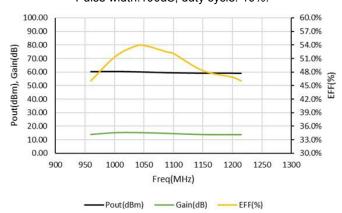
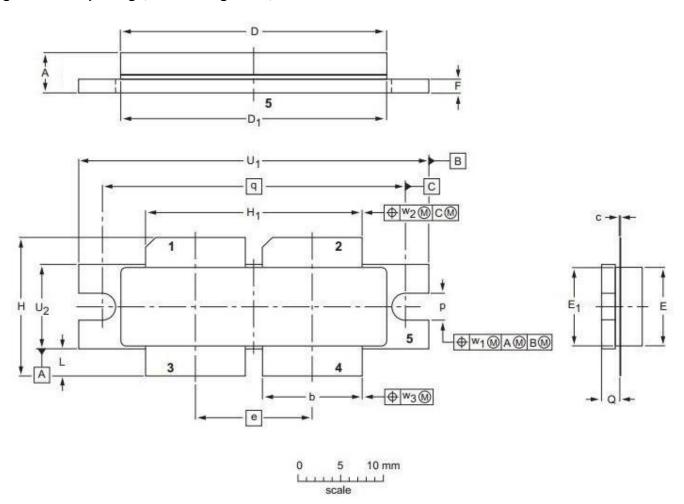



Figure 2. Power Gain and Drain Efficiency as Function of Pulse Output Power (960-1215MHz)

Package Outline

Flanged ceramic package; 2 mounting holes; 4 leads (1, 2—DRAIN, 3, 4—GATE, 5—SOURCE)

UNIT	A	b	С	D	D ₁	е	E	E ₁	F	Н	H ₁	L	р	q	q	U ₁	U ₂	W ₁	W ₂	W ₂
Mm	4.7	11.81	0.18	31.55	31.52	13.72	9.50	9.53	1.75	17.12	25.53	3.48	3.30	2.26	35.56	41.28	10.29	0.25	0.51	0.25
IVIIII	4.2	11.56	0.10	30.94	30.96	13.72	9.30	9.27	1.50	16.10	25.27	2.97	3.05	2.01	33.30	41.02	10.03	0.25	0.51	0.25
	0.185	0.465	0.007	1.242	1.241		0.374	0.375	0.069	0.674	1.005	0.137	0.130	0.089		1.625	0.405			
Inches	0.165	0.455	0.004	1.218	1.219	0.540	0.366	0.365	0.059	0.634	0.995	0.117	0.120	0.079	1.400	1.615	0.395	0.01	0.02	0.01

OUTLINE		REFERENCE		EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	1000E DATE
PKG-D4E					03/12/2013

Document Number: YC1271VP Preliminary Datasheet V1.0

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2018/10/12	Rev 1.0	Preliminary Datasheet Creation

Disclaimers

Specifications are subject to change without notice. Yingtron believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Yingtron for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Yingtron. Yingtron makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Yingtron in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Yingtron products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Yingtron product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with us.

Copyright by Yingtron Microwave Electronics Co., Ltd.