1300W, 50V High Power RF LDMOS FETs

Description

The YC188XR is a 1300-watt capable, high performance, unmatched LDMOS FET, designed for wide-band commercial and industrial applications with frequencies HF to 500MHz. It can be used for both CW and pulse application.

It is featured for high power and high ruggedness, suitable for Industrial, Scientific and Medical application, as well as FM radio, VHF TV and Aerospace applications.

• Typical Performance (On Yingtron FM band fixture with device soldered, Power tuned): V_{DD} = 50 Volts, I_{DQ} = 200 mA, CW, Pin=25W

Freq(MHz)	Pout(W)	Eff(%)	
88	1320	18	78
98	1350	18	79
108	1330	17.5	77

- Recommended driver: YC1503V or YC1506VP
- Application board for 2-30/27/40/225/325MHz upon request

Features

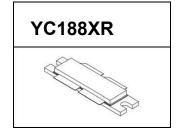

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Internally Matched for Ease of Use
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Excellent thermal stability, low HCI drift
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	135	Vdc
GateSource Voltage	V _{gs}	-10 to +10	Vdc
Operating Voltage	V _{DD}	+55	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case ,Case Temperature	Rejc	0.11	∘C/W
80°C, 1300W CW, 50 Vdc, IDQ = 100 mA	RejC	0.11	°C/W
Transient thermal impedance from junction to case	Zth	0.03	∘C/W
Tj = 150° C; tp = 100 us; Duty cycle = 20 %	Zth	0.03	-0/10

Table 3. ESD Protection Characteristics

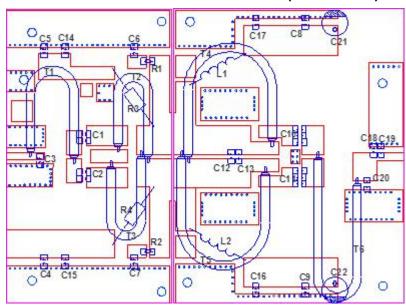

Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2

Table 4. Electrical Characteristics (TA = 25 °C unless otherwise noted)

DC Characteristics

Drain-Source Voltage		405		
V _{GS} =0, I _{DS} =1.0mA	V _{(BR)DSS}	135		V
Zero Gate Voltage Drain Leakage Current	1	 	1	
$(V_{DS} = 50V, V_{GS} = 0 V)$	DSS	 		μA
Gate—Source Leakage Current	1		1	
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}		I	μA
Gate Threshold Voltage	V (4h)	 2.54		V
$(V_{DS} = 50V, I_{D} = 600 \mu A)$	$V_{GS}(th)$	2.04		v
Gate Quiescent Voltage	V	 3.17		V
(V_{DD} = 50 V, I_D = 200 mA, Measured in Functional Test)	$V_{\text{GS}(Q)}$	5.17		V
Drain source on state resistance	Dda(an)	80		
(V_{\text{DS}} = 0.1V, V_{\text{GS}} = 10 \text{ V}) Each section side of device measured	Rds(on)	00		mΩ
Common Source Input Capacitance	C _{ISS}	600		pF
(V_{GS} = 0V, V_{DS} =50 V, f = 1 MHz) Each section side of device measured				
Common Source Output Capacitance	C _{oss}	140		pF
(V_{GS} = 0V, V_{DS} =50 V, f = 1 MHz) Each section side of device measured				
Common Source Feedback Capacitance	C _{RSS}	2.2		pF
(V_{GS} = 0V, V_{DS} =50 V, f = 1 MHz) Each section side of device measured				

Reference Circuit of Test Fixture (88-108MHz)

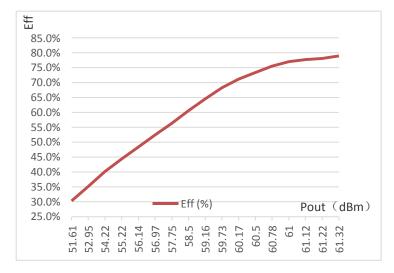
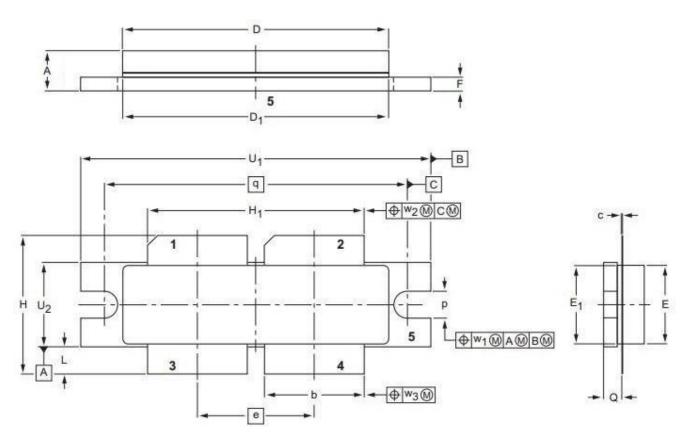
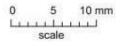


Figure 1. Test Circuit Component Layout							
Part	description	Model					
C1, C2, C6, C7, C10, C11, C16, C17	470PF	DLC70B					
C3	1.5PF	DLC75D					
C4, C5, C6, C7, C8, C9	10UF	100V/10UF					
C10,C11	470PF*3	DLC70B					
C12	4.7PF	DLC70B					
C13	10PF	MIN02-002CC100J-F					
C14~C17	1000PF	DLC70B					
C18	2.2PF	DLC70B					
C19,C20	3.3PF	DLC70B					
R1,R2	39Ω*2	0805					
R3,R4	470Ω	1W/470Ω					
L1, L2	50nH	DIY					
T1	50Ω,150mm	SF-086-50					
T2,T3	25Ω,150mm	SFF-25-1.5					
T4,T5	12.5Ω,170mm	SFF-12.5-1.5					
Т6	50Ω,200mm	RG402-3					

TYPICAL CHARACTERISTICS


Figure 2: Power Efficiency as a Function of Pout


Vds = 50 V, Idq = q00 mA, TA = 25 °C, CW Frequency=100MHz

Package Outline

Flanged ceramic package; 2 mounting holes; 4 leads (1, 2—DRAIN, 3, 4—GATE, 5—SOURCE)

UNIT	A	b	с	D	D1	е	E	E1	F	Н	H1	L	р	Q	q	U1	U ₂	W1	W ₂	W ₂
	4.7	11.81	0.18	31.55	31.52	10.70	9.50	9.53	1.75	17.12	25.53	3.48	3.30	2.26	35.56	41.28	10.29	0.25	0.51	0.25
mm	4.2	11.56	0.10	30.94	30.96	13.72	9.30	9.27	1.50	16.10	25.27	2.97	3.05	2.01	35.50	41.02	10.03	0.25	0.51	0.25
inches	0.185	0.465	0.007	1.242	1.241	0.540	0.374	0.375	0.069	0.674	1.005	0.137	0.130	0.089	4 400	1.625	0.405	0.01	0.00	0.01
inches	0.165	0.455	0.004	1.218	1.219	0.540	0.366	0.365	0.059	0.634	0.995	0.117	0.120	0.079	1.400	1.615	0.395	0.01	0.02	0.01

OUTLINE		REFERENCE	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	1330E DATE
PKG-D4E				$\bigcirc \bigcirc$	03/12/2013

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2019/12/17	Rev 1.0	Preliminary Datasheet

Disclaimers

Specifications are subject to change without notice. Yingtron believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Yingtron for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Yingtron. Yingtron makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose."Typical" parameters are the average values expected by Yingtron in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Yingtron products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Yingtron product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with us.

 $\mathsf{Copyright} \circledcirc \mathsf{by} \mathsf{Yingtron} \mathsf{Microwave} \mathsf{Electronics} \mathsf{Co.}, \mathsf{Ltd.}$