20W, 50V RF Power LDMOS FETs

Description

The YC2002VP is a 20W capable, high performance, unmatched LDMOS FET, designed for wide-band commercial and industrial applications with frequencies HF to 2GHz. It is featured for high power and high ruggedness, suitable for Industrial, Scientific and Medical application, as well as FM radio, VHF and UHF TV applications. It can be configured as either push pull or single ended device.

Typical performance(on 470-860MHz test board with device soldered): V_{DD} = 50

Volts,Vg	s=3.43V, I _□	_{DQ} = 50	mA,	CW	1.

Freq(MHz)	Pin(dBm)	Pout(dBm)	Pout(W)	IDS(A)	Gain(dB)	EFF(%)
470	24.2	43	20.0	0.93	18.8	42.9%
550	26.2	43	20.0	1.14	16.8	35.0%
650	26.2	43	20.0	1.16	16.8	34.4%
750	26.3	43	20.0	1.10	16.7	36.3%
860	25.5	43	20.0	1.06	17.5	37.6%

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift

Suitable Applications

- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)
- 470-860MHz (UHF TV)
- 136-174MHz (Commercial ground communication)

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant
- Laser Exciter
- Synchrotron
- MRI
- Plasma generator
- Weather Radar

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V_{dss}	+110	Vdc
GateSource Voltage	V_{gs}	-10 to +10	Vdc
Operating Voltage	V _{dd}	+55	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	T,	+200	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Pair	1.5	°C/M
T_{C} = 85°C, T_{J} =200°C, DC test	K#JC	1.0	C/W

Test Methodology	Class					
Human Body Model (per JESD22A114)		Class 2				
Table 4. Electrical Characteristics (T _A = 25 °C, half section, unles	s otherwise not	ed)				
Characteristic	Symbol	Min	Тур	Max	Unit	
DC Characteristics (per half section)						
Drain-Source Voltage	N		110	110		
V _{GS} =0, I _{DS} =1.0Ma	V (BR)DSS		110		V	
Zero Gate Voltage Drain Leakage Current				1		
$(V_{DS} = 75V, V_{GS} = 0 V)$	IDSS			I	μΑ	
Zero Gate Voltage Drain Leakage Current				1	A	
$(V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V})$	IDSS			I	μΑ	
GateSource Leakage Current				1	🗛	
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	IGSS			I	μΑ	
Gate Threshold Voltage	V (4b)		2.8		V	
$(V_{DS} = 50V, I_D = 600 \mu A)$	V _{GS} (UI)		2.0		v	
Gate Quiescent Voltage	Varia		34		V	
$(V_{DD} = 50 \text{ V}, I_D = 50 \text{ mA}, \text{Measured in Functional Test})$	V GS(Q)		0.4		v	
Drain source on state resistance	Rds(on)		1		mO	
(Vds=0.1V, Vgs=10V)	143(01)		I		11122	
Common Source Input Capacitance	Con		11 /		nЕ	
$(V_{GS} = 0V, V_{DS} = 50 V, f = 1 MHz)$	CISS		11.4		рі	
Common Source Output Capacitance	Com		10		ъĘ	
$(V_{GS} = 0V, V_{DS} = 50 V, f = 1 MHz)$	Coss		4.9		рі	
Common Source Feedback Capacitance	citance			ъĘ		
$(V_{GS} = 0V, V_{DS} = 50 V, f = 1 MHz)$	C _{RSS}		0.05		μr	
Load Mismatch (In YingtronTest Fixture, 50 ohm system): V _{DD} = 50 Vdc, I _{DQ} = 50 mA, f = 500MHz, pulse width:100us, duty cycle:10%						
Load 10:1 All phase angles, at 350W Pulsed CW Output Power	No Device D	egradation				

Table 3. ESD Protection Characteristics

Reference Circuit of Test Fixture Assembly Diagram (Layout file upon request)

Figure 1. Test Circuit Component Layout (470-860MHz)

Table 1. Test Circuit Component Designations and Values

Component	Description	Suggested Manufacturer
C1, C6, C8, C9	470 pF	ATC800B
C2, C4, C5, C12	2.0 pF	ATC800B
C3	6.8 pF	ATC800B
R2, R3	Chip Resistor, 910 Ω , 0805	
R4	Chip Resistor, 5.1 Ω	
L1	25 nH	DIY
C7, C10	Electrolytic Capacitor ,10uF,50V	
R1	Chip Resistor, 10 Ω ,0805	
PCB	0.762mm [0.030''] thick, ɛr=3.48, Rogers RO4350B, 1 oz. copper	

TYPICAL CHARACTERISTICS

Figure 3:Pout, Power Gain and Drain Efficiency over the band Test Condition:VDS=50V IDQ=50mA VGS=3.43VSignal mode: CW, Pout = 20W

Package Outline

Revision History

Table 6. Document revision history

Date	Revision	Datasheet Status
2019/11/30	Rev 1.0	Preliminary Datasheet Creation

Disclaimers

Specifications are subject to change without notice. Yingtron believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Yingtron for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Yingtron. Yingtron makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Yingtron in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Yingtron products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Yingtron product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with us.

Copyright by Yingtron Microwave Electronics Co., Ltd.